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A procedure for the  systematic der iva t ion  of three-dimensional  4-connected nets  is out l ined and 
applied to nets wi th  2, 3 and  4 points in the  repeat  unit .  The relevance to crystal chemistry of nets  
containing loops (digons) is noted.  Some of the  simplest open packings of te t rahedra  are indicated, 
and  a number  of more complex nets (4-, 5-, 6-, 8- and  12-connected) wi th  cubic symmet ry  are 
listed. 

Introduct ion 

In  the three-dimensional 3-connected nets considered 
in Par t  1 (Wells, 1954) the number (N) of points in 
the repeat unit must be even, and the minimum value 
of N is 4. In  three-dimensional 4-connected nets the 
minimum value of h T is 2 and all higher integral values 
are possible. We shall derive systematically the nets 
with 2, 3 and 4 points in the repeat unit, but  we 
shall also refer to some more complex 4-connected 
nets which are of interest in connection with certain 
crystal structures. 

In  nets in which four or more links meet at  each 
point there is the possibility tha t  some or all of the 
links outline polyhedra: 

(a) there are discrete polyhedra, 
(b) all space is divided into polyhedra of one or more 

kinds. 

If we proceeded with the derivation of nets to a suf- 
ficient degree of complexity we should therefore in- 
clude examples of the partitioning of space into poly- 
hedra. Reference will be made to relevant aspects of 
this problem. 

Derivat ion  of t h r e e - d i m e n s i o n a l  4 -connected  nets  

These may  be derived by joining up some or all of the 
points in planar nets to points in adjacent layers so 
tha t  all the points become 4-connected. Planar nets 
of four types have to be considered: 

(a) 3-connected nets: Equal  numbers of points in 
each layer must be joined to points in adjacent 
layers above and below. 

(b) Mixed 3- and 4-connected nets: Here the 3- 
connected points are to be joined either upwards 
or downwards to 3-connected points of adjacent 
layers. The number of 3-connected points in the 
repeat unit  must clearly be even. 

(c) Mixed 2- and 4-connected nets: Each of the 2- 
connected points must form two additional links 
to points in adjacent layers. 

(d) Mixed 2-, 3- and 4-connected nets: The 2- and 

3-connected points form additional links as in 
(b) and (c). 

The simpler 3-connected plane nets have been listed 
and illustrated in Par t  1 (Table 1 and Fig. 1). The 
4-connected plane nets required in (c) are derived by 
finding the ways in which a plane can be divided into 
polygons. If ~n is the fraction of the total  number of 
polygons which are n-gons then 

(PZ+(P4-}-7~5 +"  • • +(Pn = 1 

Net 1 ,N  = 1 

Net 3. N = 9 

• \ / \ / \ / \ 

Net 4 a . N =  3 

Net 5. N =  12 

Net 2 a , N =  4 Ne t  2 b . N =  4 

Net 3, N=  6 

/// 
Net 4b,N = 3 

? 
Net 6.N = 4 

Fig. 1. Some 4-connected plane nets. 
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and 
3 ~ 3 + 4 ~ 4 + 5 ~ 6 + . . .  + n ~ .  = 4 .  

The first six solutions of these equations are listed in 
Table 1, and the nets are illustrated (some in more 
than  one configuration) in Fig. 1. 

Table 1. 4-connected plane nets 

m N e t  N ~3 (P4 (P5 906 ~7 

2 2 4 ½ - -  ½ - -  - -  

3 3 6 , 9  ~ ½ ~ - -  - -  
4 3 t - -  - -  ½ - -  

4 5 12 ~ - -  - -  - -  ¼ 
6 4 ½ ¼ - -  ¼ - -  

~os ~09 

m 

m 

m 

Table 2. Three-dimensional 4.connected nets 

N e t  

1 

2 
3 
4 
5 

6 
7 
8 
9 

l 0  
11 
12 
1 3  

14 
15 
1 6  

17 
18 
19 
20  

P o l y g o n s  i n  n e t  

N 3 4 5 6 7 8 9 10 11 

2 6 

3 3 7 8 
- -  4 - -  6 - -  8 

6 - -  8 
6 - -  8 

m 4 

- -  4 

3 
3 
3 4 
3 - -  5 

4 

- -  4 5 

4 

3 ~ 5 
3 4 

4 

3 

6 
6 - -  
6 - -  

7 
6 
6 - -  

3 6 

10 
9 

- -  10 
9 10 

The three-dimensional nets will be listed in order of 
increasing numbers of points in the repeat unit 
(Table 2), but  it is convenient to indicate their deriva- 
tion under the headings (a)-(d). 

(a) From 3-connected nets 
The simplest planar 3-connected net is the hexagonal 

net  with 2 po/nts in the repeat unit. By connecting 
alternate points to points in layers above and below 
(Fig. 2(a) and (c)) there arises the simplest three- 
dimensional 4-connected net (Net 1) with 2 points in 
the (trielinic) unit cell. The highly symmetrical form 
of this net  with 8 points in the cubic unit cell is the 
diamond structure. 

The numbers of points in repeat units of plane 3- 
connected nets 'a re  even. 

For 4 points in the repeat unit there are the pos- 
sibilities: 

(a) (b) (c) Net 1 (d)Net 6 

r- . . . . . . . .  ~ P . . . . . . . . .  7 

(e) Net 1 ( f)  Net 7 (g) Net 8 

F i g .  2. D e r i v a t i o n  of  4 - c o n n e c t e d  n e t s  (see t e x t ) .  

(1) Alternate layers A (Fig. 2(a)) and its 'mirror 
image' A'  (Fig. 2(b)) give the sequence of layers 
A A'  A A ' . . .  shown in elevation in Fig. 2(d) with 
4 points in the repeat unit (Net 6). For tetrahedral  
bonds this is the wurtzite structure. There is an 
indefinite number of more complex sequences of A 
and A'  layers; compare the SiC structures. 

(2) In  a double repeat unit of the plane hexagonal 
layer we may arrange two D and two U points as in 
Fig. 2(e), (f) and (g). (D indicates a point to be con- 
nected downwards to a U point of the layer below 
and U a point to be connected upwards to a D point 
of the layer above.) Of these the first is simply Net 1 ; 
the others are new nets, Nets 7 and 8. 

(3) Planar 3-connected nets with 4 points in the 
repeat unit. No new nets arise from Nets 3 and 4 of 
Table 1 of Par t  1. 

For higher numbers of points in the repeat unit the 
three-dimensional nets can be derived in a similar 
way. The A A ' A  A ' . . .  type of net occurs only for 
nets with 4n points in the repeat unit, since there are 
no planar 3-connected nets with odd numbers of points 
in the repeat units. 

(b) From mixed 3- and 4-connected nets 
In  order to connect up to a three-dimensional 4- 

connected net there must be an even number of 3- 
connected points in the repeat unit. The simplest ease 
is therefore the plane net with 3 points in the repeat 
unit. The nets arising here are shown in Fig. 3. They 
are: 

3 points in unit cell: Nets 2 and 3; 
4 points in unit cell: Nets 9-14. 

(Fig. 3(c) does not give rise to a permissible net  
because x = y; see Par t  1.) 

(c) From mixed 2- and 4-connected nets 
The plane nets arise by placing points on the lines 

of 4-connected nets. There is no plane 4-connected 
net with 2 points in the repeat unit (see Table 1). 

2 points in repeat unit.--There is only one case: 
1 4-connected and 1 2-connected point, and this is 
not permissible because x = y  (Fig. 4(a)). 
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(a) Net 2 (b) Net a 

",," 1 ' , /  2 
5 . . . A  .... A . .  

"¢'2 ',." ".*" 1 ", /,,o. 
° . . ~  . . . . . . . . . . .  

'" ' \  ."1 '" ."" 2 " 

1 \ / ": 

(c) (d) 

Net ? Net 10 Net 11 

Net lh  Net 12 Net '13 
(e) 

Fig. 3. (a) and  (b) 4-connected  Nets  2 and  3. (c) See tex t .  (d) P ro jec t ion  of r h o m b o h e d r a l  fo rm of N e t  2. 
(Heights  as f ract ions  of r hombohed ra l  [111] axis.) (e) Der iva t ion  of 4-connected  Nets  9-14. 

3 points in repeat unit.--One net only: 1 4-con- 
nected and 2 2-connected points. In Fig. 4(b) the point 
A cannot be connected to corresponding points of 
layers above and below because this would make the 
distance between unconnected points CC' equal to 
AA'  or BB', where primes indicate equivalent points 
in adjacent layers. There are, however, two other 
interesting possibilities involving the linking of point A 
(Fig. 4(b)) of one layer to point B'  of the layer above 
and point D'  of either the layer below (c) or of the 
layer above (d). This mode of linking gives rise to screw 
axes, as Shown at (e) and (f), where the numbers 
represent the heights of points above the plane of the 
paper in terms of ½ (distance between layers). In (e) 
one-half of the triangles represent clockwise and the 
other haft anti-clockwise helices This net (Net 4) can 
have rhombohedral or cubic symmetry. In (f) all the 
triangles in the projection represent helices of the same 
sense (here anticlockwise); this is the enantiomorphic 
quartz type of net (Net 5). The most symmetrical 
forms of these nets are illustrated in Fig. 6. 

4 points in repeat unit.--No permissible nets 
arise. 

(d) .From mixed 2-, 3- and 4-connected nets 
The relevant plane nets arise by placing (2-con- 

nected) points on the lines of the plane 3- and 4-con- 
nected nets of Fig. 3. Since there must be an even 
number of 3-connected points in the repeat unit the 
simplest nets will be formed from systems with 
4 points in repeat unit: 1 2-connected, 2 3-connected, 
and 1 4-connected. The permissible nets are set out 
in Fig. 5. Of the three ways of placing the 2-connected 
points in the third net only the third gives a permissible 
three-dimensional net. 

We have now derived the 4-connected nets with 
2, 3 and 4 points in the repeat unit. They are sum- 
marized in Table 2, which lists the smallest polygons 
in the nets, and Nets 1-7 and 15 are illustrated, in 
their most symmetrical forms, in Fig. 6. Nets 1, 5, 6, 7 
and 8 are illustrated as open packings of tetrahedra 
in Figs. 9-13. 

35* 
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Y A ~_ 

(c) (d) 

.~0 ~ 0 

(e)  Net 4 ( f )  Net 5 

® Point connected to points in layers above and below 
@ Point connected to points both in layer above or in layer h'elow 

:Fig. 4. Derivation of 4-connected nets (see text). In (e) and (f) 
heights are given in terms of one-third of the repeat distance 
between layers. 

Loops in 4-connected nets 

For 4-connected nets in which the same number of 
loops starts from each point there are two possibilities 
(Fig. 7): (a) two loops from each point, when only 
linear systems or closed rings are possible; and (b) 
one loop from each point. The nets arising under (b) 
are exactly analogous to those for 3-connected points, 
being 3-connected nets in which one-third of the links 
have been replaced by loops. There are 4-connected 
nets of this kind corresponding to each of the three- 
dimensional 3-connected nets. 

If we drop the condition tha t  the same number of 
loops starts from each point then series of nets can be 
derived containing points of type (a) and/or (b). Any  
number of points of type  (a) may  be added between 
pairg of points already connected by a loop, as at  (c), 
but  it  is doubtful whether such nets are of interest in 
the present connection. 

The simplest three-dimensional 4-connected net  con- 
taining loops is of interest in connection with the 
systematic derivation of 3-connected from 4-connected 
nets by replacing 

\ /  \ / 
• by  . - - .  / \  / \ 

N e t  15 N e t  16 

N e t  17 N e t  18 N e t  19 

N e t  20 
Fig. 5. Derivation of 4-connected Nets 15-20. 
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1 2 

f 
f J  ~ f /  

5 6 

7 15 

Fig. 6. Some three-dimensional 4-connected nets. The numbering is that of Table 2. 

thereby doubling the number of points in the unit cell. 
In  this way the 4-connected Net 1 gives the 3-connected 
Nets 1 or 2 depending on the relative orientations of the 
2-point units. The nineteen three-dimensional 3-con- 

or rings 

~ and 
(b) : [ ~  ~ t3. ~,~ ~.~ ~ three-dimensional 

' ' 

(c) (d) 

Fig. 7. Loops in 4-connected nets. 

nected nets with 6 points in the unit cell must be 
derivable from the 4-connected nets with 3 points in 
the unit cell. I t  can easily be verified that  the 3-con- 
nected Net 15 cannot be derived in this way from any 
of the 4-connected Nets 2-5 of Table 2. This net 
(and also the 3-connected Net 14) can, however, be 
obtained in this way from the simplest 4-connected 
net containing loops, namely, that  based on the 3-point 
repeat unit (d) of Fig. 7. This new 4-connected net is 
illustrated in Fig. 8, which also shows the 3-connected 
Nets 14 and 15 drawn in similar orientations. 

Nets containing loops are important because by 
placing points along the links they represent structures 
of compounds AXe, AX3, etc. formed by the sharing 
of edges of planar, tetrahedral, octahedral, etc. co- 
ordination groups. Thus the linear system of Fig. 7(a) 
represents in this way the structures of crystalline 
CuC12 (or CuBr~) and SIS2: 
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/ 

> 

(a) (b) Net l¢  (c) NetlS 
Fig. 8. Relat ion between the  simplest  three-dimensional  4-connected ne t  containing loops (a), 

and  the  3-connected Nets  14 and 15. 

Fig. 9. 

Fig. 10. 

Fig. 11. 
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Fig. 12. 

Fig. 13. 

\ A / X \ A / X \ ' 4 / X \  4 / X \ ~ /  
/ \ X  / \ X / " \ X / ' \ X / ~ \  

The corresponding structures based on, for example, 
tetrahedra sharing all corners are obtained simply by 
placing an X atom along each link of certain of the 
4-connected nets of Table 2. These two types of net 
therefore provide a way of studying the most regular 
types of open packing8 of polyhedra. 

Open packings of tetrahedra 

Space-filling by polyhedra, i.e. the close-packing of 
polyhedra, received attention many years ago, out- 
standing contributions being the enumeration by 
Fedorov (1904) of the five types of polyhedra which 
fill space when packed together in the same orienta- 
tion and the work of Andreini (1907) on space-filling 
combinations of regular and semi-regular solids, to 
which we refer later. Few systematic studies seem to 
have been made of open packings of polyhedra, though 
they are of great interest in crystallography. 

Polyhedra may be placed together so that  faces, 
edges, or vertices, or combinations of these, are in 
contact. Arrangements of tetrahedra in which each 
is in contact with four others at its vertices follow 
directly from the 4-connected nets of which the sim- 
plest were listed in Table 2. Certain of these nets can 
be realised with equal links and a regular tetrahedral 
arrangement of links at each point. The lines joining 
the mid-points of the links meeting at each point are 
the edges of regular tetrahedra described around the 
points of the original net. Each tetrahedron is in 
contact with four others at its vertices (the mid-points 
of the links of the 4-connected net) and the system of 
linked tetrahedra is necessarily periodic in three 

dimensions. If the tetrahedra represent SiO 4 (or Al04) 
groups the tetrahedron packings represent the idealized 
structures of the forms of silica and of aluminosilicates 
with framework structures. 

Corresponding to the nets of Table 2 there are the 
following tetrahedron packings: 

Net 1 : cristobalite structure Fig. 9 
5: quartz structure Fig. l0 
6: tr idymite structure Fig. 11 
7 : Fig. 12 
8 : Fig. 13 

4 C 1 layer 16 C'1 16 C 2 
8 C 2 layers 2 layers 

8 T~ 8 T 2 16CT 
2 layers 1 layer 

8U 81/ 

Fig. 14. Derivat ion of open packings of te trahedra.  
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Fig. 15. 

Fig. 16. 

Fig. 17. 

The structures adopted by silica represent the three 
simplest ways of joining up tetrahedral groups in three 
dimensions. I t  is therefore of interest to enquire 
whether a particular framework silicate adopts the 
simplest of a family of related structures. This point 
may be illustrated by reference to the felspars. 

The structures of Figs. 9 and 11 are built from layers 
in which tetrahedra are arranged at the points of the 
simplest plane 3-connected net (the hexagonal net), 
the unattached vertices pointing alternately up and 
down. Such a layer may be represented diagrammati- 
cally as in Fig. 2(a), each tetrahedron being linked to 
three others in the plane and having its fourth vertex 
pointing downwards (black circle) or upwards (open 
circle). In Fig. 14 are shown the simpler possibilities 
for the plane 4:8 net. If the pattern of black circles 
in a layer is the same as that of the open circles then 
in order that the layers may be joined together it is 
only necessary to translate each one relative to the 
adjacent layers, as in Fig. 13. If this is not the case, 
the three-dimensional structure must be built of pairs 
of layers related by planes of symmetry. In Fig. 14 
C and T indicate whether adjacent or opposite tetra- 
hedra in a 4-ring point in the same direction (upwards 
or downwards). 

I t  is interesting to note that the idealized felspar 
structure (Taylor, 1933) is the rather complex packing 

4 

r 

( 
t 

(b) 

(a) (b) 

Fig. 18. Configurations of the 4-connected net (a) of Table 3. 

(a) 

Fig. 19. The cubic nets (d) and (f) of Table 3. 
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Net 

(a) 
(b) 

(c) 

(d) 

P 
4 

T a b l e  3 

Space-group Equivalent  position 

P n 3 m  6 (d) 
F d 3 m  8 (a) 
I413 12 (c) 
I m 3 m  12 (d) 
Ia3d 24 (c) 

P m 3 m  24 (k) 

F d 3 m  32 (e)* 
P m 3 m  48 (n) 

F m 3 m  96 (k) 

Coordinates Remarks 

- -  Net 4 Fig. 6 
- -  Net  1 Fig. 6 (H. & L. 41) 
- -  H.  & L .  43 
- -  Andreini Fig. 14 (or) 

y = 0.369 Andreini Fig. 21 (c, or, cot) 
z = 0.185 
x = 0.069 H.  & L. 44 
x = 0.256 Andreini Fig. 24' (Ps, cot) 
y = 0.104 
z = 0.397 
x = 0.193 Andreini Fig. 23 (tt, ct, cot) 
z ---- 0.079 H. & L. 42 

P m 3 m  6 (e) x = 0.293 
P m 3 m  24 (m) x ---- 0.138 

z -- 0.362 
F m 3 m  96 (j) y = ½, z = {t 

Andreini Fig. 17 (o, ct) 
Andreini Fig. 22 (c, Ps, ct, rco) 

Andreini Fig. 24 (tt, co, or) 

6 P lattice - -  - -  Andreini Fig. 5 (c) 
P413 4 (a) - -  

(e) Fd3ra 16 (c) - -  Andreini Fig. 15 (t, tt) 

P m 3 m  12 (j) x ---- 0-207 Andreini Fig. 20 (c, co, rco) 
F m 3 m  96 (k) x ---- 0.146 Andreini Fig. 19 (4 c, rco) 

z = 0.354 

8 I lattice --- - -  
( f )  P m 3 m  3 (c) - -  Andreini Fig. 18 (o, co) 

1~3d 12 (a) - -  - -  

12 F lattice - -  - -  Andreini Fig. 12 (4 o) 

* Origin at (L ~, ~) from centre of symmetry.  
Notes : 

(a). The links in this net  outline truncated octahedra (Fedorov's fifth space-filling parallelepiped). A less symmetrical variant  
of this net  (e.g. the position 12 (h) in P m 3 m ,  x ~ ~) is shown in Fig. 18(a); for x = ¼ it becomes the net  of Fig. 18(b). This ne t  
is the basis of the ultramarine structure. 

(b). The ne t  1413 12 (c) is enantiomorphic. The net  (b) consists of two interpenetrating but  independent  nets of this kind, one 
l- and the other r-handed. I t  may  be described as a three-dimensional racemate. The net  Ia3d,  16 (b), bears exactly the same 
relationship to the 3-connected Net 1 (1413, 8 (a)), being also a three-dimensional racemate. 

(c) and (e). Tetrahedra may be placed at the points of the diamond net  to give a 4-connected net  (c) with discrete tetrahedra,  
two points being placed along each link, or a 6-connected net  (e) by joining up mid-points of adjacent links. Of these (c) corre- 
sponds to the open-packing 44 of Heesch & Laves, and (e) to Andreini's packing of equal numbers of tetrahedra and truncated 
tetrahedra. 

(d) and (f). Octahedra may  be placed at the points of a cubic lattice to give the 5-connected net  (d) of Fig. 19(a), which is 
Andreini 's packing of octahedra and truncated cubes, or the 8-connected net  (f) of Fig. 19(b), which is a packing of equal num- 
bers of octahedra and cuboctahedra. The net  (d) represents the boron framework in the CaB e structure. 

16C1, w h e r e a s  t h a t  of p a r a c e l s i a n  (Smi th ,  1953) is t h e  
s i m p l e r  8C s t r u c t u r e  of Fig .  15. (Owing  t o  t h e  d i s to r -  
t i o n  of t h e  l aye r s  t h e  a c t u a l  u n i t  cell  c o n t a i n s  16 Si(A1)04 
t e t r a h e d r a  l ike  t h e  fe lspars . )  T h e  s t r u c t u r e s  of F igs .  
15 a n d  13 a re  r e l a t e d  in  t h e  s a m e  w a y  as t h o s e  of F igs .  
11 a n d  9. T h e  4C a n d  8 T  s t r u c t u r e s  of Figs .  13 a n d  16 
do  n o t  a p p e a r  t o  be  k n o w n .  F ig .  17 i l l u s t r a t e s  t h e  
o p e n  s p h e r e  p a c k i n g  42 of H e e s c h  & L a v e s  (1933) as  
a p a c l d n g  of t e t r a h e d r a ;  i t  is t h e  t r i g o n a l  a n a l o g u e  
of t h e  p a c k i n g  of Fig .  12. 

S o m e  f r a m e w o r k s  w i t h  c u b i c  s y m m e t r y  

I n  T a b l e  4 of P a r t  1 w e  l i s t ed  s o m e  3 - c o n n e c t e d  n e t s  
w i t h  cubic  s y m m e t r y  w h i c h  a re  r ea l i zab l e  w i t h  e q u a l  
l i nks  a n d  e q u i v a l e n t  po in t s .  I n  t h e  course  of t h i s  w o r k  

.a l is t  ha s  b e e n  m a d e  of m o r e  h i g h l y  c o n n e c t e d  n e t -  
w o r k s  of t h i s  t y p e ,  s o m e  of w h i c h  a re  of i n t e r e s t  i n  
s t r u c t u r a l  p r o b l e m s  (Tab le  3). I n  c e r t a i n  of t h e s e  n e t s  
t h e  l i nks  o u t l i n e  p o l y h e d r a .  A n d r e i n i  (1907) c o n s i d e r e d  
a spec ia l  case of space- f i l l ing ,  n a m e l y ,  b y  r e g u l a r  or  
s e m i - r e g u l a r  p o l y h e d r a ,  a l o n e  or in  c o m b i n a t i o n .  
T a b l e  3 i n c l u d e s  al l  A n d r e i n i ' s  space- f i l l ings  w h i c h  
h a v e  cub ic  s y m m e t r y ;  t h e  n u m b e r s  of t h e  f igures  i n  
A n d r e i n i ' s  p a p e r  a re  g iven ,  a n d  his  s y m b o l s  a re  
r e t a i n e d :  t e t r a h e d r o n  (t), t r u n c a t e d  t e t r a h e d r o n  (tt), 
c u b e  (c), t r u n c a t e d  c u b e  (c$), o c t a h e d r o n  (o), t r u n c a t e d  
o c t a h e d r o n  (ot), c u b o c t a h e d r o n  (co), t r u n c a t e d  cub-  
o c t a h e d r o n  (cot), r h o m b i - c u b o c t a h e d r o n  (rco), oc tag-  

o n a l  p r i s m  (Ps). 
T a b l e  3 also i n c l u d e s  t h e  cubic  f o r m s  of t h e  n e t s  

c o r r e s p o n d i n g  t o  t h e  s p h e r e  p a c k i n g s  41-44 of H e e s c h  
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& Laves. Of these 41 is the diamond net, 43 arises by  
joining up the mid-points of adjacent links in 31 
(see Par t  1), and 44 results from placing a tetrahedral 
group at  each point of 4~. The hexagonal form of 4~ 
is the 4-connected l~et 6 of Table 2 and Figs. 2 and 11 ; 
the hexagonal variant of 4~ has been illustrated in 
Fig. 17 as a packing of tetrahedra. 

Inert gas  hydrate s tructures  

To complete our discussion of 4-connected nets we 
mention here the structures which have been proposed 
(Claussen, 1951 a, b, c) for hydrates with formulae close 
to X.  6H~0 and Y. 17H~O where X is A, CHa, COs, etc. 
and Y is CH3I, C~HsC1, etc. These structures are open 
packings of water molecules with the inert gas or 
other material in the interstices. Since each water 
molecule in an 'expanded ice' framework has four 
neighbours arranged tetrahedrally the required net- 
works are 4-connected. I t  might have been expected 

tha t  the nets would have been found among those in 
which the links outline polyhedra in the space- 
fillings of Andreini (Table 3). Instead, these hydrate  
structures correspond to very elegant space-filllngs by  
(a) pentagonal dodecahedra and 14-hedra (with 12 
5-gon and 2 6-gon faces), and (b) pentagonal dodeca- 
hedra and 16-hedra (with 12 5-gon and 4 6-gon faces). 
The unit  cells contain respectively 46 and 136 water 
molecules. 
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Polycrystal!ine specimens of pure aluminium and of iron have been examined with the X-ray micro- 
beam technique at various stages of a tensile test. From the X-ray photographs, measurements 
have been made of the size of the particles formed within the grains during deformation, of the 
breadths of the X-ray reflexions from these crystallites and of the mean angle between them. The 
particles are identified with the regions between slip bands in the material and an attempt is made 
to account for the stress-strain curve of the specimens from this hypothesis and the results of a 
dislocation theory due to Frank. Reasonable agreement is found between calculation and experi- 
ment. 

1. Introduction 

X-ray microbeam methods have been used previously 
to examine a number of polycrystalline metals after 
deformation by rolling (Hirsch & Keller, 1952; Hir~ch, 
1952a, b ;  Gay & Kelly, 1953a, b). I t  was decided to 
carry out an investigation of specimens of aluminium 
and iron deformed in tension, first, because the spec- 
imens are then in a more precisely defined mechanical 
state, and second, to test whether a different method 
of deformation resulted in the development of a dif- 
ferent texture within the material. 

The interpretation of the earlier results has led to 
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the formulation of a theory to account for the ult imate 
yield stress of polycrystalline metals containing a 
particle structure of the type found (Gay, Hirsch & 
Kelly, 1954). The results presented in this paper are 

used in an a t tempt  to extend this theory to explain 
the work-hardening of the materials in terms of the 
experimentally observed variation of particle size with 
plastic strain. 

Polycrystalline aluminium has been thoroughly in- 
vestigated because this material is particularly suit- 
able for examination with the X-ray microbeam tech- 
nique. Fewer experimental results are available for 
iron specimens but these are of importance because 
they confirm the existence of particles of size ~ 1-2/~ 
found within the rolled material (Gay & Kelly, 1953a). 


